Chapter 10: Classes and Objects

// interface functions set... ()
void Person: :setname(char const *str)

{
if (name)
delete name;
name = new char[strlen(str) + 1];
strcpy(name, str);
}
void Person: :setaddress(char const *str)
{
if(address)
delete address;
address = new char[strlen(str) + 1 1;
strcpy(address, str);
}
void Person::setphone(char const *str)
{
if(phone)
delete phone;
phone = new charl(strlen(str) + 1 };
strcpy(phone, str);
}
inline char const *Person::getname{) const
{
return name;
}
inline char const *Person::getaddress() const
{
return address;
}
inline char const *person: :getphone () const
{
return phone;
}
void printperson(Person const &p)
{
if(p.getname())
cout << "Name . * << p.getname() << endl;
if (p.getaddress())
cout << "Address: " << p.getaddress() << endl ;
if(p.getphone())
cout << "Phone : " << p.getphone() << endl;

}
void main()
{
Person pl, p2;
pl.init();
p2.init();
pl.setname("Rajkumar”);
pl.setaddress(“E-mail: raj@cdacb.ernet.in");

351

352 Mastering C++

pl.setphone ("90-080-5584271");
printperson{(pl);
p2.setname("Venugopal K R");
p2.setaddress("Bangalore University");
p2.setphone("-not sure-");
printperson(p2);
pl.clear();
p2.clear();

}

Run

Name : Rajkumar
Address: E-mail: raj@cdacb.ernet.in
Phone : 90-080-5584271

Name : Venugopal K R
Address: Bangalore University
Phone : -not sure-

As illustrated in this program, the keyword const occurs following the argument list of functions.
Again the following Const-Rule applies: whichever appears before the keyword const must not alter
its contents and if any attempt is made to alter data, the compiler issues an error message. The same
specification must be repeated in the definition of member functions:

char const *Person: :getname() const

{

return name;
}
A member function, which is declared and defined as cons t, should not alter any data fields of its
class. In other words, a statement like
name = 0;
in the above const function getname () would lead to a compilation error.

The formal parameter to the function
void printperson (- Person const &p)
is declared as a constant object. The private data members, by specification itself cannot be modified.
If the object parameter is declared as const, even its public data members cannot be modified. Thus the
function printperson() can only read public data members, but cannot modify them.

The purpose of const functions lies in the fact that C++ allows const objects to be created. For
such objects only the const member, which does not modify them has to be called. The only exception
to the rule are the constructors and destructors: these are called automatically. This featuré is compa-
rable to the definition of a variable int const max=10 ; such a variable may be initialized on its
definition. Analogously, the constructor can initialize its object at the definition, but subsequent as-
signments cannot be performed. Generally. it is good to declare member functions which do not modify
their object to be const.

10.16 Structures and Classes

Structures and classes in C++ are given the same set of features. For example, structures may also be
used to group data as well as functions. In C++, the difference between structures and classes is that by

Chapter 10: Classes and Objects 353

default. structure members have public accessibility, whereas class members have private access
control unless otherwise explicitly stated. The declaration for a structure in C++ is similar to a class
specification. Itis illustrated in the following declaration:

class ccomplex

private: ;; private part
float real; // real part of complex number
float imag; // imaginary part of complex number
public: // public part

void getdatal();
void outdata(char *msg);
complex AddComplex (complex c2);

Yi

A similar structure may be created as shown below:

struct complex

private: // private part
float real; // real part of complex number
float imag; // imaginary part of complex number
public: // public part

void getdata();
void outdata(char *msg)
complex AddComplex (complex c2);

};
The above declarations of class and structure can be written without any loss of meaning as follows:

class complex

{
// by default private part, the keyword private is omitted
float real; // real part of complex number
float imag; // imaginary part of complex number
public: // public part

void getdata();
void outdata(char *msg };
complex AddComplex (complex c2 };

}i

Thus, in the absence of the keywordprivate, the members of a class are treated as private till another
access-specifier keyword (private or public) is encountered. However, in a structure, the members are
treated as public by default. It is illustrated in the following declaration:

struct complex

{
// by default public, the keyword public is omitted
void getdatal():
void outdata(char *msg);

complex AddComplex (complex c2);

private: // private part
float real; // real part of complex number
float imag: // imaginary part of complex number

354 Mastering C++

Note: Most programmers prefer to use a class to group data as well as functions, a structure to group
only data, following the conventions of C. It is advisable to use the keywords private and public
explicitly in the declaration of classes and structures to improve readability of the program code.

10.17 Static Data and Member Functions

Earlier examples of classes have shown that. zach bject of a class has its own set of public or private
data. Each public or private function then accesses the object’s own version of the data. In some
situations, it is desirable to have one or more common data fields, which are accessible to all objects of
the class. An example of such a situation is keeping the status of how many objects of a class are
created and how many of them are currently active in the program. Another example is a flag variable.
which states whether some specific initialization has occurred; only the first object of the class performs
the initialization and then sets the flag to done.

Such situations are analogous to C code, where several functions need to access the same variable.
A common solution in C is to define all these functions in one source file and to declare the variable as
static: the variable name is then not known beyond the scope of the source file. This approach is quite
valid, but does not agree with the philosophy of one data or function per program having multiple
source files. Another C-like solution is to create the variable in question with unusual names such as
__MYFLAG, _6ULDVS, etc., with the hope that other parts of the program (libraries, link modules, etc.)
do not make use by defining these variables by accident. Neither the first, nor the second C-like solution
is elegant. C++ therefore allows static data and functions, which are common to all objects of a class.

Static Data Member Definition

In Turbo C++ version 1.0, static data members were not required to be explicitly defined. When the
linker finds undefined static data, it would automatically define them and allocate storage for them
instead of generating errors, but both new versions of Turbo C++ and Borland C++ insist on the explicit
definition; no other way to define a static data exists. The syntax of defining static data member of a
class is shown in Figure 10.22.
class ClassName

—» storage qualifier Static data member

static DataType DataMember;

Initialization is optional

DataType ClassName :: DataMember = InitialValue;

Figure 10.22: Static data member declaration in a class
and its definition outside the class

The static data members can be initialized during their definition cutside all the member functions, in
the same way as global varrables are initiaiized. The definition and initialization of a static data member
usually occur in one of the source files of the class functions. The statement which defines and
initializes the variable MyClass: :count (count is a data member of MyClass) is always valid
whether count is declared private,; public or protected inside the class MyClass. The reason is thar
static data members accessed in this way are essentially global data.

Chapter 10: Classes and Objects 355

Private static data members

When a data member is required to be accessible to more than one function, the normal procedure
adopted in a function-oriented language is to declare it as an external variable. But this technique may
be dangerous as it exposes external data variable to accidental modification, which may have undesir-
able effects on the efficient and reliable working of the program.

C++ provides an elegant solution to that problem in the form of static data members. The usual
technique that is adopted is to declare the static data member in the private section of a class. Thus,
effective data hiding is achieved, as the data is only accessible through the member functions, while
providing access to all the objects of that class. This is illustrated in the program count . cpp.

// count.cpp: counts how many calls are made to a member function set()
#include <iostream.h>
class MyClass
{
static int count; // static member
int number;
public:
// initializes object's member and increments function call
void set(int num)

{
number = num;
++Ccountc;

}

void show()

{

cout << "\nNumber of calls made to ‘'set()’ through any object: *
<< count;
}
}:
// static member count is shared by all the objects of class MyClass
int MyClass::count = 0; // definition and initialization of a data member
void main()
{
MyClass objl;
objl.show();
objl.set(100);
objl.show():
MyClass obj2, obj3;
obj2.set(200);
obj2.show(); //same result even with objl.show and obj3.show();
obj2.set(250);
obj3.set(300);
objl.show(); //same result even with obj2.show and obj3.show();

Y

J

Run

Number of calls made to ‘'set(}' through any object:
Number of calls made to 'set()' through any object:
Sumber of calls made to 'set()' through any object:
Number of calls made to 'set()' through any object:

N PO

356 Mastering C++

Omission of the statement

int MyClass::count = 0; »
in the above program would generate linking error although program is compiled successfully. This is
because the statement in the class MyClass

static int count;
would not have been defined anywhere and it is a static variable within a class. Hence, an error would
be generated if a value is assigned to count without any memory being allocated to it. It is possible to
omit initialization of a static membe: variable when it is defined, as shown below:

int MyClass::count;

Irrespective of whether the data member is private, public or protected, it must always be defined
using the scope resolution operator. Static variables act like a bridge between objects of the same class.
The linker allocates storage for a static member when the variable is defined even if no objects are
actually created from the class.

Access Rules for Static Data Members

The public static data members can be accessed using the scope resolution operator or through objects
with member access operator. Using the scope resolution operator is a completely new notation for
member access. However, the accessibility of private static data members is same as that of normal
private members.

The static data members which are declared public are similar to normal global variables. They can
be addressed by the program by prefixing class name and scope resolution operator. It is illustrated in
the following code fragment:

class Test
{
public:
static int public_int;
private:
static int private_int;
}:
void main ()
{
Test::public_int = 145; // ok
Test::private_int = 12; // wrong, do not touch the private data members
Test myobj;
myobj.public_int = 145; // ok
myobj.private_int = 12; // wrong, do not access the private data member

The static data member public_int defined in the class Test can be accessed using the scope
resolution operator prefixed by its class name as follows:
Test::public_int = 145; // ok
Whereas, the data member private_int cannot be accessed using the scope resolution operator.
Therefore, the statement
Test::private_int = 12; // wrong, do not touch the private data members

Chapter 10: Classes and Objects 357

Jeads to a compilation error. Objects accessing the static data member access the same data that is
accessed by using the scope resolution operator. The statement

myobj.public_int = 145; // ok
refers to the public static datamember. However, a private static data member cannot be accessed either
by using the scope resolution or the dot operator.

Static Member Functions

Besides static data, C++ allows the definition of static functions. These static functions can access only
the static members (data or function) declared in the same class; non-static data are unavailable to these
functions. Static member functions declared in the public part of a class declaration can be accessed
without specifying an object of the class. It is illustrated in the program dirs . cpp.

;/ dirs.cpp: static data and member functions of a class
#include <iostream.h>
#include <string.h>
class Directory
{
public:
// the static string
static char path []; // declaration
// constructors, destructors etc. not shown here
// here's the static public function
static void setpath(char const *newpath);
}:
// the static function
void Directory: :setpath (char const *newpath)
{
strepy(path, newpath);
}
// definition of the static variable
char Directory::path [199] = "/usr/raj"; // definition
void main ()

{
// static data member access, which is defined as public
cout << "Path: " << Directory::path << endl;
// Alternative (1): calling setpath() without
// an object of the class Directory
Directory: :setpath ("/usr");
cout << *"Path: " << Directory::path << endl;
// Alternative (2): with an object
Directory dir;
dir.setpath ("/etc"):
cout << "Path: * << dir.path;

}

Run

Path: /usr/raj

Path: /usr

Path: /etc

358 Mastering C++

Static member functions can also be defined in the private region of a class. Such private static
member functions can access only static data members and can invoke static member functions. The
following points should be noted about static members:

+ Only one copy of static data member exists for all the instances of a class.
o Static member functions can access only static members of its class.
+ Static data members must be defined and initialized like global variables, otherwise the linker gener-
ates errors.
+ Static members defined as public can either be accessed through the scope resolution operator as
ClassName: :MemberName
or it can be accessed through the object of a class as
ObjectName .MemberName
That is, static members can be accessed using only the class name, without referring to a particular
object.

10.18 Class, Objects and Memory Resource

When a class is declared, memory is not allocated to the data members of the class. Thus, there exists
a template, but data members cannot be manipulated unless an instance of this class is created by
defining an object. It might give an impression that when an object of a particular class is created,
memory is allocated to both its data members and member functions. This is partly true. When an object
is created, memory is allocated only to its data members and not to member functions.

Member functions are created and stored in memory only once when a class specification is de-
clared. All objects of that class have access to the same area in the memory where the member functions
are stored. It is also logically true as the member functions are the same for all objects and there is no
point in allocating a separate copy for each and every object created using the same class specification.
However, separate storage is allocated for every object’s data members since they contain different
values. It allows different objects to handle their data in a manner that suits them.

The organization of memory resource for the objects is depicted in Figure 10.23. It can be observed
that N objects of the same class are created and data members of those objects are stored in distinct
memory locations, whereas the member functions of object1 to objectN are stored in the same
memory area. Thus, each object has a separate copy of data members and the different objects share the
member functions among them. It is simpler to visualize each object as containing both its own data and
functions. But the knowledge of what happens behind the scene is useful in estimating the time and
space complexity of a program during its execution.

Static Data Members

Whenever a class is instantiated, memory is allocated to the created object. But there exists an excep-
tion to this rule. Storage space for data members which are declared as stat ic is allocated only once
during the class declaration. Subsequenily, all objects of this class have access to this data member, i.e.,
all instances of the class access the same data member. When one of them modifies the static data
member, the effect is visible to all the instances of the class.

The organization of memory resource for the object's static data members is shown in Figure
10.24. It can be observed that in the N objects of the same class, automatic data members (of each
object) are stored in distinct memory locations, whereas static data members (of all objects) are stored

Chapter 10: Classes and Objects 359

in the same memory locations. Thus each object has a separate copy of the automatic data members and
they share static data members among them.

Object 1 Object 2 Object N
|
| data 2 | [data 2 | .o
L [] L J
L] [] L]
[]| | []
\\\\\ \\l\\\ | ",”’ ”,”’
S 1~ P e -7
o | NI
Sa I/," Sa l‘

Separate memory for object's data members
Shared memory for class functions

Figure 10.23: Memory for objects’ data and function members

A static data member is allocated a fixed area of storage at link time, like a global variable, but the
variable’s identifier is accessed only using the scope resolution operator with the class name. Thus
static data is useful when all the objects of the same class must share a common item of information
having same characteristics as non-static members. It is visible only within the class, but its extent
(lifespan) is the entire program execution period.

Data members are generally allocated with the same storage class. If an object is declared auto, all
its data is auto; static objects have static data members. Static data members are an exception to this
rule; when an object is created, memory is not allocated to its static members (if there are any), because
this would cause muitiple copies of the static data member appear in every object.

'
(

360 Mastering C++

Object 1 Object 2 Object N
o]| o
Come]| | (o] -
. . .
[] [] []

\\ \\ ” "
\\\ I\\\ I,”’ '/"
o | N ”P’ "—’

\\\ I \:«’4 I ,"
. | Phe S] r"
\\ " \\ "

Separate memory for class's automatic data members
Shared memory for class's static data members

Figure 10.24: Memory for objects' static and automatic data members

10.19 Class Design Steps

As pointed out by the designer of C++, Dr. Bjarne Stroustrup, “Considering designing a single class is
typically noi a good idea. Concepts do not exist in isolation; rather, a concept is defined in the context
of other concepts. Similarly, a class does not exist in isolation, but is declared together with logically
related classes. Such a set is often called a class library or a component. Sometimes all classes in a
component constitute a single class hierarchy, sometimes they do not.”

The set of classes in a component is united by some logical criteria, often by a component style and
by areliance on common services. A component is thus the unit of design, documentation, ownership,
and often reuse. However, to use any part of a component, one needs to understand the logical criteria
that define the component, the conventions and style embodied in the design of the components and
its documentation, and the common services (if any).

The design of a component is a challenging task. It can be easily handled by breaking it into steps
so that focus can be placed on the various sub-tasks in a logical and complete way. (Unlike structured
programming, OOPs concentrates on data decomposition instead of algorithm decomposition.) How-

Chapter 10: Classes and Objects 361

ever. there is no one right method for component design, Here is a series of steps that have worked well
in the design of components with most designers:

[1]. Find the concepts/classes and their most fundamental relationships.
[2]. Refine the classes by specifying the sets of operations on them.

a. Classify these operations. In particular, consider the needs for construction, copying, and de-
struction. C++ features for defining such operations are discussed in the chapter on Object
Initialization and Cleanup.

b. Provide standard interface. It must provide the same look and feel of standard data types to user
defined data types. C++ has constructs for defining such standard interfaces and are discussed in
the chapter on Operator Overloading.

¢. Consider minimalism, completeness. and convenience.

[3]. Refine the classes by specifying their dependencies on other classes:

a. Inheritance. (Discussed in the chapter on Inheritance.)

b. Use dependencies.

[4]. Specify the interfaces for the classes.
a. Separate functions into private, public, and protected operations.
b. Specify the exact type of the operations on the classes.

Note that these steps are iterative in nature and hence, several sequences over these steps are
required to produce a design code. It is advisable to design these classes as template classes as
discussed in the chapter Generic Programming with Templates. The error handling model adopted in
these classes must use exceptions to report runtime errors; discussed in the chapter Exception Han-
dling. Once objects are created dynamically, there must be provision to invoke operations on these
objects dynamically. These features are discussed in the chapter Virtual Functions. Apart from the
class design steps, a true object-oriented development passes through object-oriented analysis, de-
sign, testing, etc., phases; discussed in the chapter OO Analysis, Design and Development.

Review Questions

10.1 What is a class ? Describe the syntax for declaring a class with examples.

10.2 What are the differences between structures and classes in C++?

10.3 What are objects ? Describe the syntax for defining objects with examples. Explain how C++
supports encapsulation and data abstraction.

10.4 Write a program illustrating class declaration, definition, and accessing class members.

10.5 Explain the client-server model of object communication.

10.6 The University requires an interactive student database package that permits one to keep track
of the dynamic student population in the campus. This database maintains at the minimum, a
student's name, roll-no, marks of three hardcore subjects and three softcore subjects. The
information about any student can come at any time.

(a) What kind of data structure is suited for the above implementation and why ?
(b) Give the class specification.
(c) Given a student's roll-no, how do we determine the marks scored by the student ?
10.7 What are the guidelines that need to be followed for deciding whether to make the member

362

10.8
10.9

10.10
10.11

10.12
10.13

10.14
10.15

10.16

10.17
10.18

10.19

10.20

10.22

Mastering C++

functions inline or not ?

What is the difference between member functions defined inside and outside the body of a
class? How are inline member functions defined outside the body of a class ?

What is data hiding ? What are the different mechanisms for protecting data from the external
users of a class's objects ?

What are empty classes ? Can instances of empty class be created ? Give reasons.

Write a program for adding two vectors (which are objects of the class Vector). Use dynamic
data members instead of arrays for storing vector elements.

Explain the different methods of passing object parameters.

Write an interactive program for manipulating objects of the Distance class. Support member
functions for adding and subtracting distance members of two objects.

What are friend functions and friend classes ? Write a normal function which adds objects of the
complex number class. Declare this normal function as friend of the Complex class.

Write a program for processing objects of the Student class. Declare member functions such
as show () as read-only member functions.

Bring out the differences between auto and static storage class datamembers. Canstatic
member functions of a class access all types of members of a class. Give reasons. What are the
access rules for accessing static members ?

Discuss memory requirements for classes, objects, data members, member functions, static and
non-static data members.

Why object-oriented programming approach is the preferred form of programming over other
approaches.

Write a program for manipulating coordinates in Rectangle coordinate system. Represent points
as objects. The class Point must include members such as x and y (as data members), and
add(),sub(),angle(), etc. (as member functions).

Write a program for manipulating coordinates in Polar coordinate system. Represent points as
objects. The class Polar must include data members such as radius and theta, and
member functions such as add (), sub (), angle (), etc.

Explain steps involved in designing class components as suggested by the C++ designer.

11

‘Object Initialization and Cleanup

11.1 Class Revisited

A class encapsulates both data and functions manipulating them into a single unit. It can be further
used as an abstract data type for defining a class instance called object. As with standard data types,
there must exist a provision to initialize objects of a class during their definition itself. Consider an
example of the class bag having two data members: contents to hold fruits and ItemCount to hold
the number of items currently stored in the bag. It has interface functions such as SetEmpty (),
put (), and show () whose usage is illustrated in the program bag. cpp.

// bag.cpp: Bag into which fruits can be placed

#include <iostream.h>

const int MAX ITEMS = 25; // Maximum number of items that a bag can hold
class Bag

{

private:

int contents [MAX_ ITEMS]; // bag memory area

int ItemCount; // Number of items present in a bag
public:

// sets ItemCount to empty
void SetEmpty ()
{

ItemCount = 0; //When you purchase a bag, it will. be empty
}
void put(int item) // puts item into bag
{

contents[ItemCount++] = item; // counter update

}
void show() ;
}:
// display contents of a bag
void Bag: :show()
{
for(int i = 0; i < ItemCount; i++)
cout << contents[i] << " *;
cout << endl;
}
void main ()
{
int item;
Bag bag;
bag.SetEmpty () ; // set bag to empty

364 Mastering C++

while(1)
{
cout<<"Enter Item Number to be put into the bag <0-no item>: *;
cin >> item;
if(item == 0) // items ends, break
break;
bag.put(item);
cout << "Items in Baqg: *;
bag.show();

}

Run

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1 3

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1 3 2

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1 3 2 4

Enter Item Number to be put into the bag <0-no item>:

=Y S S W

In main (), the statement
Bag bag;
creates the objectbag without initializing the It emCount to 0 automatically. However, it is performed
by a call to the function SetEmpty () as follows:
bag.SetEmpty () ; // set bag to empty
According to the philosophy of OOPs, when a new object such as bag is created, it will naturally be
empty. To provide such a behavior in the above program, it is necessary to invoke the member function
SetEmpty explicitly. In reality, when a bag is purchased, it might contain some items placed inside the
bag as gift items. Such a situation in C++ can be simulated by
Bag bagl = 2;
It creates the object bag and initializes it with 2, indicating that the bag is sold with two gift items. It
resembles the procedure of initialization of a built-in data type during creation, i.e., there must be a
provision in C++ to initialize objects during creation itself.

It is therefore clear that OOPs must provide a support for initializing objects when they are created,
and destroy them when they are no longer needed. Hence, a class in C++ may contain two special
member functions dealing with the internal workings of a class. These functions are the constructors
and the destructors. A constructor enables an object to initialize itself during creation and the destruc-
tor destroys the object when it is no longer required, by releasing all the resources allocated to it. These
operations are called object initialization and cleanup respectively.

11.2 Constructors

A constructor is a special member function whose main operation is to allocate the required resources
such as memory and initialize the objects of its class. A constructor is distinct from other member

Chapter 11: Object Initialization and Cleanup 365

functions of the class, and it has the same name as its class. It is executed automatically when a class is
instantiated (object is created). It is generally used to initialize object member parameters and allocate
the necessary resources to the object members. The constructor has no return value specification (not
even void). For instance, for the class Bag, the constructor is Bag: :Bag ().

The C++ run-time system makes sure that the constructor of a class is the first member function to
be executed automatically when an object of the class is created. In other words, the constructor is
executed everytime an object of that class is defined. Normally constructors are used for initializing the
class data members. It is of course possible to define a class which has no constructor at all; in such a
case, the run-time system calls a dummy constructor (i.e., which performs no action) when its object is
created. The syntax for defining a constructor with its prototype within the class body and the actual
definition outside it, is shown in Figure 11.1. Similar to other members, the constructor can be defined
either within, or outside the body of a class. It can access any data member like all other member
functions but cannot be invoked explicitly and must have public status to serve its purpose. The
constructor which does not take arguments explicitly is called default constructor.

class ClassName

{
..... // private members
public : ewem... must be public
// public members
TCIaSSName () ;=== Constructor prototype
()" no return type nor void
ClassName :: ClassName() -==w=. Constructor definition
{
// constructor body definition
}

Figure 11.1: Syntax of constructor

The initialization may entail calling functions, allocating dynamic storage, setting variables to spe-
cific values, and so on. Since the constructor is executed every time an object is created, it can be used
to assign initial values to the data members of the object. It will reduce the burden on the programmer
to specifically initialize the data within each object that is created and hence, prevent errors. These
constructors do not have any return type, since they are invoked during the creation of objects trans-
parently. But they can have as many arguments as necessary.

The program newbag . cpp has a counter, which can be used to count events or objects placed in
a bag. Since the counter has to start from zero value and count upwards, a mechanism is required by
which the counter can be set to zero as soon as it is created. An appropriate solution to this situation,
is to use a constructor.

// newbag.cpp: Bag into which fruits can be placed with constructor
#include <iostream.h>
const int MAX_ITEMS = 25; // Maximum number of items that a bag car hold
class Bag
{
private:
int contents[MAX_ITEMS]; // bag memory area
int ItemCount; // Number of items present in a bag

366 Mastering C++

public:
// sets ItemCount to empty
Bag () // constructor
{
ItemCount = 0; // When you purchase a bag, it will be empty
}
void put(int item) // puts item into bag
{
contents[ItemCount++] = item; // item into bag, counter update
}

void show();
}i
// display contents of the bag
void Bag: :show()
{
for(int i = 0; i < ItemCount; i++)
cout << contents[i] << " *; \
cout << endl;

}

void main()

{
int item;
Bag bag:;
while(1)

{
cout << "Enter Item Number to be put into the bag <0-no item>: ";
cin >> item;
if(item == 0) // items ends, break
break;

bag.put(item);
cout << "Items in Bag: ";
bag.show() ;

}

Run

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1

Enter Item Number to.be put into the bag <0-no item>:
Items in Bag: 1 3

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1 3 2

Enter Item Number to be put into the bag <0-no item>:
Items in Bag: 1 3 2 4

Enter Item Number to be put into the bag <0-no item>:

-

(=) b 0o w

In main (), the class instantiation statement
Bag bag;
creates the object bag and initializes ItemCount to zero by invoking the no-argument constructor

Chapter 11: Object Initialization and Cleanup 367

Bag: :Bag ()
automatically. In the earlier program bag . cpp, these actions are performed by the following state-
ments

Bag bag;

bag.SetEmpty () ; // set bag to empty
First, the object bag is created and then, SetEmpty () is explicitly invoked to initialize the data
member ItemCount to zero.

When an object is a local non-static variable in a function, the constructor Bag () is called when the
function is invoked. When an object is a global or a static variable, the constructor Bag () is invokec
before the execution of main () as illustrated in the program test1l.cpp.

// testi.cpp: a class Test with a constructor function
#include <iostream.h>

class Test

{

public: // ‘public' function:
Test () ; // the constructor
}:
Test::Test () // here is the definition

{

cout << "constructor of class Test called" << endl;

}
// and here is the test program:
Test G; // global object

void func()

{
Test L; // local object in function func()
cout << "here’s function func()" << endl;

}

void main()

{

Test X; // local object in function main()
cout << "main() function" << endl;
func ();
}
Run
constructor of class Test called (global object G)
constructor of class Test called (object X in main())
main() function
constructor of class Test called (object L in func())

here’s function func()

The output produced by the program is as desired (see Run - the text in parentheses indicates
comment). The program shows how a class Test is defined, which consists of only one function: the
constructor. The constructor performs only one action; a message is printed. The program contains
three objects of the class Test: first a global object, second a local object in main (), and third
arother local object in func ().

368 Mastering C++

A constructor has the following characteristics:

« It has the same name as that of the class to which it belongs.

o Itis executed automatically whenever the class is instantiated.

+ It does not have any return type.

o Itis normally used to initialize the data members of a class.

« Itis also used to allocate resources such as memory, to the dynamic data members of a class.

11.3 Parameterized Constructors

Constructors can be invoked with arguments, just as in the case of functions. The argument list can be
specified within braces similar to the argument-list in the function. Constructors with arguments are
called parameterized constructors. The distinguishing characteristic is that the name of the construc-
tor functions have to be the same as that of its class name. In the earlier program newbag.cpp,
another constructor with arguments could have been provided with one integer value to initialize the
data members ItemCount and contents[] . The syntax of parameterized constructors and their
access is shown in Figure 11.2,

class Test

{
public constructor with parameter
Test (int datal)«—
{
}

Test c1(2);: —o— 2 is passed as parameter
Test t2=3; a—

3 is passed as parameter

Figure 11.2: Parameterized constructor

Since C++ allows function overloading, a constructor with arguments can co-exist with another
constructor without arguments. The class Bag would thus have two constructors. The usage of a
constructor with arguments is illustrated in the modified program giftbag.cpp of newbag. cpp.
The object is initialized during its creation.

/ /" giftbag.cpp: Bag which has some items when gifted
#include <iostream.h>
const int MAX ITEMS = 25; // Maximum number of items that a bag can hold
class Bag
(
private:
int contents[MAX_ ITEMS]; // bag memory area
int ItemCount; // Number of items present in a bag

}:

Chapter 11: Object Initialization and Cleanup 369

public:
// sets ItemCount to empty, it is gifted as empty bag
Bag () // constructor without arguments

{
ItemCount = 0;

}

Bag(int item) // constructor with arguments

{
contents[0) = item; // when bag is gifted, it'll have some items
ItemCount = 1;

}

void put(int item) // puts item into bag

(.
contents[ItemCount++] = item; // item into bag, counter update

}

void show() ;

// display contents of a bag
void Bag: :show()

{

if (ItemCount)
for(int i = 0; i < ItemCount; i++)
cout << contents[i] << " *;
else
cout << "Nil*;
cout << endl;

void main ()

{
int item;
Bag bagl; // uses Bag::Bag() constructor
Bag bag2 = 4; // uses Bag::Bag(int item) constructor
cout << "Gifted bagl initially has: ";
bagl.show();
cout << "Gifted bag2 initially has: ";
bag2.show();
while(1)
{
cout << "Enter Item Number to be put into the bag2 <0-no item>: ";
cin >> item;
if(item == 0) // items ends, break
break;
bag2.put(item);
cout << "Items in bag2: *;
bag2.show() ;
}
}
Bun

Gifted bagl initially has: Nil

370 Mastering C++

Gifted bag2 initially has: 4

Enter Item Number to be put into the bag2 <0-no item>: 1
Items in bag2: 4 1
Enter Item Number to be put into the bag2 <0-no item>: 2

Items in bag2: 4 1 2

Enter Item Number to be put into the bag2 <0-no item>: 3
Items in bag2: 4 1 2 3

Enter Item Number to be put into the bag2 <0-no item>: 0

The Bag class has two constructors. The first constructor does not have any arguments. The next

constructor has a single argument. The statement

Bag bagl;
creates the object bagl and initializes its data member ItemCount by invoking the no-argument
constructor Bag: :Bag (). The next statement ‘

Bag bag2 = 4;
creates the object bag2 and sets its data members ItemCount to 1 and contents to 4 by invoking
the one-argument constructor Bag: :Bag(int item). The concept of having multiple construc-
tors and their invocation based on suitable arguments during the creation of objects bagl and bag2
with user interface is shown in Figure 11.3.

Instances of the class Bag

Client program

(]

Bag bagl;

private:

Bag bag2=4;
int contents{}; r—
int ItemCount;
ly bag2.put (item);

bag2.show () ;

T~

Figure 11.3: Bag class and parameterized constructor

When a constructor is declared not to accept any arguments, it is called a default constructor. It is
invoked when the object is instantiated with no arguments. The constructor Bag () is a default con-
structor. Since a default constructor takes no arguments, it follows that each class can have only one
default constructor. The operation of the default constructor function is usually to initialize data, used
subsequently by other member functions. It can also be used to allocate the necessary resources such
as memory, dynamically.

Chapter 11: Object Initialization and Cleanup n

11.4 Destructor

When an object is no longer needed it can be destroyed. A class can have another special member
function called the destructor, which is invoked when an object is destroyed. This function comple-
ments the operation performed by any of the constructors, in the sense that, it is invoked when an
object ceases to exist. For objects which are local non-static variables, the destructor is called when the
function in which the object is defined is about to terminate. For static or global variables, the destructor
is called before the program terminates. Even when a program is interrupted using anexit () call, the
destructors are called for all objects which exist at that time.

The syntax of the destructor is shown in Figure 11.4. Destructor is a member function having the
character ~(tilde) followed by the name of its class and brackets (i.e., ~classname ()). Itis invoked
autornatically to reclaim all the resources allocated to the object when the object goes out of scope and
is no longer needed.

class ClassName

..... // private members
public : - must be public
// public members
- ClassName(); ——. Destructor prototype
}i Tilde character, destructor returns nothing

ClassName :: ~ ClassName() === Destructor definition

// destructor body definition

Figure 11.4: Syntax of destructor

Similar to constructors, a destructor must be declared in the public section of a class so that it is
accessible to all its users. Destructors have no return type. It is incorrect to even declare avoid return

type. A class cannot have more than one destructor. The program test . cpp illustrates the use of
destructors.

// test.cpp: a class Test with a constructor and destructor
#include <iostream.h>
class Test

{
public: // 'public' function:
Test(); // the constructor
~Test ()} // the destructor
}i .
Test: :Test () // here is the definition of constructor
{

cout << "constructor of class Test called" << endl;
}
Test::~Test () // here is the definition of destructor
{

cout << *destructor of class Test called" << endl;

}

372 Mastering C++

void main()

{
Test x; // constructor is called while creating
cout << "terminating main()" << endl;

} // object x goes out of scope, destructor is called

Run

constructor of class Test called
terminating main ()
destructor of class Test called

An interesting aspect of constructors and destructors is illustrated in the program count . cpp. It
keeps track of the number of objects created and how many of them are still alive.

// count.cpp: counts how many objects are created and how may are alive
#include <iostream.h>

int nobjects = 0; // number of objects of the class MyClass

int nobj_alive = 0; // number of objects present of the class MyClass
class MyClass

{

public:
MyClass () // -increments objects count
{ .
++nobjects; // add to total
++nobj_alive; // add to the active
}
~MyClass() // decrements active objects count
{
--nobj_alive; // deduct one from active objects list
}
void show()
{
cout << "Total number of objects created: * << nobjects << endl;
cout<<"Number of objects currently alive: "<<nobj_alive << endl;
}
}i
void main()
{
MyClass objl;
objl.show();
{ // new block
MyClass objl, obj2;
obj2.show() ; // can be objl.show()
} // objl and obj2 goes. out of scope, hence deleted
objl.show();
MyClass obj2, obj3;
obj2.show(); // can be objl.show() or obj3.show()
}
Run

Total number of objects created: 1
Number of objects currently alive: 1

Chapter 11: Object Initialization and Cleanup 373

Total number of objacts created: 3
Number of objects currently alive:: 3
Total number of objé&cts created: 3
Number of objects currently alive: 1
Total number of objects created: 5
Number of objects currently alive: 3

The constructor in the above program increments the global variables nobjects andnobj_alive,
by one. Whenever an object is created, the constructor is invoked automatically and counters are
updated to maintain the object's statistics. The destructor decrements only the count variable
nobj_alive by one. Whenever objects go out of scope, the destructor is invoked automatically and
the counters will get updated (decremented). The status can be retrieved by using the member function
show () of the class MyClass. It prints the same message irrespective of the object invoking it; (it
uses global data, which remains the same irrespective of the object’s message).

The following rules need to be considered while defining a destructor for a given class:

o The destructor function has the same name as the class but prefixed by a tilde (~). The tilde distin-
guishes it from a constructor of the same class.

« Unlike the constructor, the destructor does not take any arguments. This is because there is only one
way to destroy an object.

+ The destructor has neither arguments, nor a return value.

* The destructor has no return type like the constructor, since it is invoked automatically whenever an
object goes out of scope.

o There can be only one destructor in each class. This is essentially a violation of the rule that a
function can take arguments, thereby making function overloading impossible.

11.5 Constructor Overloading

An interesting feature of the constructors is that a class can have multiple constructors. This is called
constructor overloading. All the constructors have the same name as the corresponding class, and
they differ only in terms of their signature (in terms of the number of arguments, or data types of their
arguments, or both) as illustrated in the program account. cpp.

// account.cpp: passing objects as parameters to functions
#include<iostream.h>
class AccClass
{
private: // class data members
int accno;
float balance;
public: // class function members
AccClass () // Constructor no.l
{
cout << "Enter the account number for accl object: *;
cin >> accno;
cout << "Enter the balance: “;
cin >> balance;

374 Mastering C++

AccClass (int an) // Constructor no.2
{
accno = an;
balance = 0.0 ;
}
AccClass (int acval, float bal) // Constructor no.3
{
accno = acval;
balance = bal;

}

void display{)

{
cout << "Account number is: " << accno << endl;
cout << "Balance is: " << balance << endl;

}

void MoneyTransfer(AccClass & acc, float amount);

Y
// accl.MoneyTransfer(acc2, 100), transfers 100 rupees from accl to acc2
void AccClass: :MoneyTransfer (AccClass & acc, float amount)
{

balance = balance - amount; // deduct money’ from source

acc.balance = acc.balance + amount; // add money to destination
}
void main()

{

int trans_money;

AccClass accl; // uses constructor 1
AccClass acc2(10); // uses constructor 2
AccClass acc3(20, 750.5); // uses constructor 3
cout << "Account Information..." << endl;

accl.display();
acc2.display();
acc3.display();
cout << "How much money is to be transferred from acc3 to accl: *;
cin >> trans_money;
// transfer trans_money from acc3 to accl
acc3.MoneyTransfer (accl, trans_money);
cout << "Updated Information about accounts..." << endl;
accl.display();
acc2.display();
acc3.display();
3

Run

Enter the account number for accl object: 1
Enter the balance: 100

Account Information...

Account number is: 1

Balance is: 100

Account number is: 10

Chapter 11: Object Initialization and Cleanup 375

Balance is: 0

Account number is: 20

Balance is: 750.5

How much money is to be transferred from acc3 to accl: 200
Updated Information about accounts...
Account number is: 1

Balance is: 300

Account number is: 10

Balance is: 0

Account number is: 20

Balance is: 550.5

In case of a class having multiple constructors, a constructor is invoked during the creation of an
object depending on the number and type of arguments passed. The default constructor can also be
defined along with other constructors, if necessary. The invocation of different constructors during the
creation of an object of the class AccClass is shown in Figure 11.5.

class AccClass

public: _— overloaded constructors
. $AccClass();
-/',/ —PAccClass(int an);
‘, AccClass(int acval, float bal);« ...

('
[N
\ ‘AccClass accl;

MAccClass acc2(10)
AccClass acc3(20, 750, 5);-.... Lot

Figure 11.5: Constructor overloading

In this program, whenever a new account is created, one of the three steps is chosen:

« If no arguments are passed, then the program prompts the user for an account number and balance
by invoking the no-argument constructor, AccClass ().

+ If only an int argument, is provided, then the account number is initialized with the value passed as
an input argument while, the balance is set to 0.0 by invoking the one-argument constructor
AccClass (int).

« Ifboth an int as well as a f Loat argument is provided, then the account number is set to the int
value while thé balance is set to the float value by invoking the two-argument constructor,
AccClass{(int, , float).

Differences between Constructors and Destructors
The following are the differences between constructors and destructors:

+ Arguments cannot be passed to destructors.
+ Only one destructor can be declared for a given class as a consequence of the fact that destructors
cannot have arguments and hence, destructors cannot be overloaded.

« Destructors can be virtual, while constructors cannot be virtual. More details can be found in the
chapter Virtual Functions.

376 Mastering C++

11.6 Order of Construction and Destruction

The possibility of defining constructors with arguments, offers an opportunity to monitor (examine) the
exact moment at which an object is created or destroyed during the execution of a program. This has
been illustrated in the program, test2 .cpp using the Test class.

// test2.cpp: the class Test with a constructor and destructor function
#include <iostream.h>

#include <string.h>

class Test

{

private:
char *name;
public: // 'public' function:
Test () ; // the constructor
Test (char *msg); // one-argument constructor
~Test () ;
! Y
Test::Test () // here is the
{ // definition
name = new char([strlen("unnamed")+1];
strcpy (name, "unnamed" ;;
cout << ."Test object 'unnamed' created" << endl;
}
Test::Test(char *NamelIn)
{

name = new char[strlen(NameIn)+l];

strcpy(name, Nameln);

cout << "Test object " << Nameln << " created" << endl;
}
Test::~Test ()

{
cout <<"Test object " << name << " destroyed" << endl;
delete name; // release memory

}

// and here is the test program:

Test g("global"); // global object

void func()
{
Test 1("func"); // local object in function func()

cout << "here's function func()" << endl;

}

void main()

{
Test x(“main”); // local object in function main()
func ();

cout << "main() function - termination" << endl;

Chapter 11: Object Initialization and Cleanup 377

Run

Test object global created
Test object main created
Test object func created
here’s function func()

Test object func destroyed
main() function - termination
Test object main destroyed
Test object global destroyed

By defining objects of the class Test with specific names, the construction and destruction of
these objécts can be monitored. In the above program, global objects are created first, hence the
statement
Test g("global");

creates the object g and initializes its member name to "global".In func(), the statement
Test 1("func");

creates the local object 1 and initializes its member name to * func”. Inmain (), the statement
Test x("main"); // local object in function main()

creates the local object x and initializes its member name to "main".

The object which goes out of scope is immediately destroyed. In the above program, the function
func () terminates first and hence, the local object 1 is destroyed first, which can also be observed
from the program output. Secondly, the object x is dcstroyed during the termination of the function
main (). Finally, the global object g is destroyed. When more than one object is created globally, or
locally, they are destroyed in the reverse chronological order (object created most recently is the first
one to be destroyed).

11.7 Constructors with Default Arguments

Like any other function in C++, constructors can also be defined with default arguments. If any argu-
ments are passed during the creation of an object, the compiler selects the suitable constructor with
default arguments. The program complexl.cpp illustrates the usage of default arguments during
the creation of objects of the complex type class.

// complex1.cpp: default arguments to complex class
#include <iostream.h>

#include <math.h>

class complex

{
private:
float real; // real part of complex number
~float imag; // imaginary part of complex number
public:
complex () // constructor 0
{

real = imag = 0.0;

}

378 Mastering C++

complex(float real_in, float imag_in = 0.0) // constructorl

{

1l

real real_in;
imag = imag_in;
}
void show(char *msg) // display complex .number in x+iy form
{
cout << msg << real;
if(imag < 0)
cout << "-i";
else
cout << "+i";
cout << fabs(imag) << endl;
}
complex add(complex c2); // Addition of complex numbers
}:
// temp = default object + c2;

complex complex::add(complex c2) // add default and c¢c2 complex objects
{
complex temp; // object temp of complex class
temp.real = real + c2.real; // add real parts
temp.imag = imag + c2.imag; // add imaginary parts
return(temp); // return complex object

}

void main()

{
complex cl1(1.5, 2.0); // uses constructorl
complex c2(2.2); // uses constructorl with default imag value
complex c3; // uses constructor0
cl.show("cl = ");
c2.show("c2 = ");
c3 = cl.add(c2); // add cl and c2 assign to c3
c3.show("c3 = cl.add(c2): ");

}

Run

cl = 1.5+i2

c2 = 2.2+i0 :

c3 = cl.add(c2): 3.7+1i2

The constructor complex (), in the class complex is declared as
complex(float real_in, float imag_in = 0.0) // constructorl
The default value of the argument imag_in is zero. Then, the statement in main (),
complex c2(2.2);
passes only one parameter explicitly to the constructor. The compiler treats this statement as,
complex c2(2.2, 0.0);

by assuming the second argument to have default argument value (image_in = 0.0) specified at
the declaration of the constructor. However, the statement,

complex cl1(1.5, 2.0);

Chapter 11: Object Initialization and Cleanup 379

assigns 1.5toreal_inand 2.0t0oimag_in. If the actual parameter is explicitly specified, it overrides
the default value. As stated earlier, the missing arguments must be the trailing ones. The invocation of
a constructor with default arguments while creating objects of the class complex is shown in Figure
11.6.

class complex

{
public:
_..---pcomplex();
- complex(float real_in, float imag_in=6.0); %<
...... \I
Yi __—*';'
complex ¢1(1.5,2.0)jccacccmnn-===""""" .7

" .complex c3;

Figure 11.6: Default arguments to constructor

Suppose the specification of the constructor complex (float, float) is changed to,
complex(float real_in = 0.0, float imag_in = 0.0)
in the above program, it causes ambiguity while using a statement such as,
complex cl;
The confusion is whether to call the no-argument constructor,
complex: :complex()
or the two argument default constructor
complex: :complex(float = 0.0, float = 0.0)
Hence, such a specification should be avoided. If no constructors are defined, the compiler tries to
generate a default constructor. This default constructor simply allocates storage to build an object of
its class. A constructor that has all default arguments is similar to a default (no-argument) constructor,
because it can be called without any explicit arguments. This may also lead to errors as shown in the
following program segment:
class X

{

int value;

public:
X()
{
value=0;
}
X(int i=0)
{
value=i;

}

380 Mastering C++

void main()
{

X c; // Error: This leads to errors as compiler will not be
// able to decide which constructor should be called
X cl(4); // OK
}
Trying to create an object of the class X without any arguments, will cause an error as two different
constructors satisfy the requirement. Hence, the statement,
X c;
causes the ambiguity whether to call X: : X () orX: :X (int i= 0).In this, if the default constructor
is removed, the program works properly.

11.8 Nameless Objects

C++ not only supports the creation of named objects, but also the creation of unnamed objects. In the
object creation statement, the name of an object need not be mentioned. The general format for instan-
tiating nameless objects is shown in Figure 11.7.

class name arguments to constructor

ClassName (arguments);

Figure 11.7: Syntax of creating nameless objects

In the above syntax, the name of the object is not mentioned. However, the method of passing
arguments to a constructor, and the procedure for creating the nameless object is similar to the proce-
dure for creating named objects. Passing arguments to an object is optional and if no-arguments are
mentioned, a default constructor of the class is invoked. If arguments are mentioned in the object
creation statement, C++ invokes a constructor of the class that matches with the argument types. After
execution of the constructor, nameless objects are immediately destroyed and the destructor of the
class is invoked as a part of the object cleanup activity. Hence, the scope of a nameless object is limited
only to the statement in which it is created.

The feature of nameless object creation is useful in functions returning an object. The program
‘noname . cpp demonstrates the creation of nameless objects.

// noname.cpp: Nameless object creation
#include <iostream.h>
class nameless
{
int a;
public:
nameless ()
{

cout << "Constructor" << endl;

Chapter 11: Object Initialization and Cleanup 331

~nameless ()

{
cout << "Destructor" << endl;
}
}:
void main()
{
nameless(); // nameless object is created as well as destroyed here
nameless nl;
nameless n2;
cout << "Program terminates" << endl;

n

Constructor <— nameless()

Destructor <— nameless()

Constructor <— namelessnl()
Constructor <— nameless n2()

Program terminates

Destructor <— during program termination
Destructor <— during program termination

2 -

From the output it is observed that the first two output statements are generated by the statement
nameless();// nameless object is created as well as destroyed here
It can be observed that, a nameless object is created and destroyed at the same point. But this is not the
" case with named objects. The statements,

nameless nl;
nameless n2;

create the named objects n1 and n2 and they are destroyed during the termination of the program.

11.9 Dynamic Initialization through Constructors

Object's data members can be' dynamically initialized during runtime, even after their creation. The
advantage of this feature is that it supports different initialization formats using overloaded construc-
tors. It provides flexibility of using different forms of data at runtime depending upon the user's need.

Consider an example of naming persons. Some persons have only the first name (person name),
some have the first and second name {person name and surname), and others have all the three (person
name, surname, and third name). The program name . cpp illustrates the use of objects for holding
names and constructing them at runtime using dynamic initialization.

// name.cpp: object with different name pattern
#include <iostream.h>
#include <string.h>
class name
{
private:
char first(15]; // first name
char middle[15); // middle name

382 Mastering C++

char last[15]; // last name
public:
name () // constructor0

{
// initialize all string pointers to NULL
first[0] = middle[0] = last([0] = '\0';
}
name(char *FirstName) ; // constructorl
name (char *FirstName, char *MiddleName); // constructor2
//constructor3
name (char *FirstName, char *MiddleName, char *LastName);
void show(char *msg);
}i
inline name: :name(char *FirstName)
{
strcpy(first, FirstName);
middle(0) = last[0] = '\0'; // others to NULL
}
inline name: :name(char *FirstName, char *MiddleName)
{
strcpy(first, FirstName);
strcecpy(middle, MiddleName) ;
last[0] = '\0'; // others to NULL
}
name: :name(char *FirstName, char *MiddleName, char *LastName)
{
strcpy(first, FirstName);
strcpy (middle, MiddleName) ;
strcpy(last, LastName);
}
void name: :show(char *msg)
{

cout << msg << endl;

cout << "First Name: " << first << endl;
if(middle(0])

cout << "Middle Name: " << middle << endl;
if(last{0])

cout << "Last Name: " << last << endl;

}

void main()

{

name nl, n2, n3; // constructor0

nl = name("Rajkumar"); // constructorl
n2 = name{ "Savithri", "S"); // constructor2
n3 = name{ "Venugopal", "K", "R"); // constructor3
nl.show("First person details..." };

n2.show("Second person details...");

n3.show("Third person details...");

Chapter 11: Object Initialization and Cleanup 383

Run

First person details...
First Name: Rajkumar
Second person details...
First Name: Savithri
Middle Name: S

Third person details...
First Name: Venugopal
Middle Name: K

Last Name: R

The program has four constructors. The arguments to the last three constructors are passed during
runtime. The user input is used to initialize the name class's objects in one of the following form: ’

+ No name at all: default constructor (constructor0) is invoked
+ The first name: constructorl is invoked

« The first and second name: constructor?2 is invoked

« The first, second, and third name: constructor3 is invoked

The compiler selects an appropriate constructor while creating objects by choosing one that matches
the input values. For instance, in the situation

n2 = name("Savithri®", "S"); // constructor2
the compiler selects the two argument constructor
name (char *FirstName, char *MiddleName); // constructor2

which matches the call for initializing the object n2's data members.

11.10 Constructors with Dynamic Operations

A major application of constructors and destructors is in the management of memory allocation during
runtime. It will enable a program to allocate the right amount of memory during execution for each object
when the object’s data member size is not the same. Allocation of memory to objects at the time of their
construction is known as dynamic construction. The allocated memory can be released when the object
is no longer needed (goes out of scope) at runtime and is known as dynamic destruction. The program
vectorl.cpp shows the use of new and delete operators during object creation and destruction
respectively.

// vectorl.cpp: vector class with array dynamically allocated
#include <iostream.h>
class vector
{
int *v; // pointer to a vector
int sz; // size of a vector
public:
vector{ int size) // constructor
{
sz = size;
v = new int[size]; // dynamically allocate vector

334 Mastering C++

~vector () // destructor
{
delete v; // release vector memory

}
void read();
void show_sum{() ;

}i

void vector: :read()

{

for(int i = 0; i < sz; i++)

{

cout << "Enter vector[" << i << "] 2 *;
cin >> v[i];
}
}
void vector: :show_sum()
{
int sum = 0;
for(int i = 0; 1 < sz; i++)
sum += v[i];
cout << "Vector Sum = " << sum;
}
void main{()
{
int count;
cout << "How.many elements are in the vector: ";
cin >> count;
// create an object of vector class and compute sum of vector elements
vector vl(count);
vli.read():
vl.show_sum() ;

}

Run
How many elements are in the vector: 5
Enter vector([0]
Enter vector|[1
Enter vector|[2
Enter vector!{ 3

4

5

B
ot b o o =

]
]
]
]

?

?

?
Enter vector| ?
Vector Sum = 1

In main (), the statement,
vector vl(count };
creates the object v1 of the class vector dynamically of the size specified by the variable count (itis
also read at runtime). The function read() accepts elements of the vector from the console and
show_sum() computes the sum of all the vector elements and prints the same on the console.

The following points can be emphasized on dynamic initialization of objects.

« A constructor of the class makes sure that the data members are initially O-pointers (NULL).

Chapter 11: Object Initialization and Cleanup 385

« A constructor with parameters allocates the right amount of memory resources. .
« A destructor releases all the allocated memory.

11.11 Copy Constructor

The parameters of a constructor can be of any of the data types except an object of its own class as a
value parameter. Hence declaration of the following class specification leads to an error.

class X
{

private:

public:
X (X obj)i // Error: obj is value parameter

Yi

However, a class’s own object can be passed as a reference parameter. Thus the class specification
shown in Figure 11.8 is valid.

------ reference to an object of the class X

public:
X()

X(X &obj);-—== copy constructor
X{(int a);

Figure 11.8: Copy constructor

Such a constructor having a reference to an instance of its own class as an argument is known as copy
constructor.

The compiler copies all the members of the user-defined source object to the destination object in
the assignment statement, when its members are statically allocated. The data members, which are
dynamically allocated must be copied to the destination object explicitly. It can be performed by either
using the assignment operator, or the copy constructor. Consider the following statements,

vector v1(5), v2(5);
vl = v2; // operator = invoked
vector v3 = Vv2; // copy constructor is invoked

Assuming that v1 and v2 are the predefined objects of the class vector. The statement

vl = v2;
will not invoke the copy constructor even though v1 and v2 are the objects of class vector. It must
cause the compiler to copy the data from v2, member-by-member, into v1. This is the task of the
assignment operator. For more details on assignment operator overloading refer to the chapter on
Operator Overloading. The next statement,

vector v3 = v2;

386 Mastering C++

initializes one object with another object during definition. The data members of v2 are copied member-
by-member. into v3. It is the default action performed by the copy constructor. The statement,
vector v3(v2)
is treated in the same way as the statement,
vector v3 = v2;

by the compiler.

The default actions performed by the compiler are insufficient if data members of an object are
dynamically changeable. It can be overcome by overriding these default actions. The program

vector2.cpp illustrates the concept of overriding default operations performed by an user-defined
copy constructor.

// vector2.cpp: copy constructor for vector elements copying
#include <iostream.h>
class vector

{

int * v; // pointer to vector
int size; // size of vector v
public:

vector (int vector_size)
{
size = vector_size;
v = new int[vector_size];
}
vector (vector &v2);
~vector ()
{
delete v;
}
int & elem(int i)
{
if(1 >= size)
{
cout << endl << "Error: Out of Range";
return -1; // illegal access
}
return v(i];
}
void show();
}i
// copy constructor, vector vl = v2;
vector::vector(vector &v2)
{
cout << "\nCopy constructor invoked";
size = v2.size; // size of vl is equal to size of v2
v = new int[v2.size]; // allocate memory of the vector vl
for(int i = 0; 1 < v2.size; i++)
vii] = v2.v[1i]);

Chapter 11: Obiject Initialization and Cleanup 387

void vector: :show()

(

for(int 1 = 0; i < size; i++)

cout << elem(i) << ", ";
}
void main ()
{
int i;
vector v1(5), v2(5);
for(i = 0; 1 < 5; i++)
v2.elem(i) = 1 + 1;
vl = v2; // copy constructor is not invoked
vector v3 = v2; // copy constructor is invoked, vector v3(v2)
cout << "\nvector vl: ";
vl.show();
cout << "\nvector v2: ";
v2.show();
cout << "\nvector v2: ";
v3.show() ;
}
Run

Copy constructor invoked
vector vl: 1, 2, 3, 4, 5,
vector v2: 1, 2, 3, 4, 5,
vector v2: 1, 2, 3, 4, 5,

A copy constructor copies the data members from one object to another. The function also prints
the message (copy constructor invoked)to assist the user in keeping track of its execution.
The copy constructor takes only one argument, an object of the type vector, passed by reference. The
prototype is

vector (vector &v2);

It is essential to use a reference in the argument of a copy constructor. It should not be passed as a
value; if an argument is passed by value, its copy constructor would call itself to copy the actual
parameter to the formal parameter. This process would go on-and-on until the system runs out of
memory. Hence, in a copy constructor, the argument must always be passed by reference, preventing
creation of copies. A copy constructor also gets invoked when the arguments are passed by value to
functions, and when values are returned from functions. If an object is passed by value, the argument
on which the function operates is created using a copy constructor. If an object is passed by address,
or reference, the copy constructor would not be invoked, since, in such a case, copies of the objects
need not be created. When an object is returned from a function, the copy constructor is invoked to
create a copy of the value returned by the function.

11.12 Constructors for Two-dimensional Arrays

A class can have multidimensional arrays as data members. Their size can be either statically defined or
dynamically varied during runtime. A matrix class can be designed to contain data members for storing
matrix elements, which are created dynamically. The program matrix.cpp illustrates the method of

388 Mastering C++

constructing a matrix of size MaxRow x MaxCol. It has member functions to perform various matrix
operations such as addition, subtraction, etc. The destructor releases memory allocated to the matrix
whenever an object of the class matrix goes out of scope.

/ / matrix.cpp: Matrix manipulation class with dynamic resource allocation
#include <iostream.h>

#include <process.h>

const int TRUE = 1;

const int FALSE = 0;

class matrix

{
private:
int MaxRow; // number of rows
int MaxCol; // number of columns
int **p; // pointer to 2 dimensional array
public:
matrix()
{
MaxRow = 0; MaxCol = 0;
p = NULL;
}
matrix(int row, int col);
~matrix();
void read();
void show();
void add(matrix &a, matrix &b);
void sub(matrix &a, matrix &b);
void mul (matrix &a, matrix &b);
int eql(matrix &b);
}i
matrix::matrix(int row, int c¢ol) // constructor
{
MaxRow = row;
MaxCol = col;
p = new int *[MaxRow]; // dynamic allocation
for(int 1 = 0; i < MaxRow; i++)
pli] = new int[MaxCol 1};
}
matrix::~matrix() // destructor

{
for(int i = 0; i < MaxRow; i++)
delete plil;
delete p;

}
// addition of matrices, c3.add(cl, c2): c3 = cl+c2

void matrix::add(matrix &a, matrix &b)
{

int i, j;

MaxRow = a.MaxRow;

MaxCol = a.MaxCol;

Chapter 11: Object Initialization and Cleanup

if(a.MaxRow != b.MaxRow || a.MaxCol != b.MaxCol)

{
cout << "Error: Invalid matrix order for addition”;

exit(1);:

}

for(i = 0; i < MaxRow; i++)
for(3 = 0; j < MaxCol; j++)

plil(j]1 = a.plil(3] + b.plil [31;
}
// summation of matrices, c3.subf{cl, c2): c3 = cl-c2

void matrix::sub(matrix &a, matrix &b)

{
int i, 3;
MaxRow = a.MaxRow;
MaxCol = a.MaxCol;
if(MaxRow !'= b.MaxRow || MaxCol != b.MaxCol)
{
cout << "Error: Invalid matrix order for subtraction”;
exit(1);
}
for(i = 0; i < MaxRow; i++)
for(j = 0; j < MaxCol; j++)
plil 3] = a.pl(il[3] - b.plil (31
}
ices, c3.mul(cl, c2}: c3 = cl*c2

// multiplication of matri
void matrix::mul(matrix &a, matrix &b)

{
int i, 3, ki
MaxRow = a.MaxRow;
MaxCol = b.MaxCol;
if(a.MaxCol != b.MaxRow)

{
cout << "Error: Invalid matrix order for multiplication"
exit(1);

}
for(i = 0; i < a.MaxRow; i++)
for(j = 0; 3 < b.MaxCol; j++)

{
plil (il = 0;
for(k = 0; k < a.MaxCol; k++)

plil (3] += a.plillk] * b.plkl[3];

}

}
// compare matrices

int matrix::eql(matrix &b)

{
int i, 3:
for(i = 0; i < MaxRow; i++)
for(j = 0; 3 < MaxCol; j++)
if(plil(3] t= b.plil [3])

return 0;

390 Mastering C++

return 1;
}
void matrix: :read()
{
int i, j;
for(i = 0; i < MaxRow; i++)
for(j = 0; j < MaxCol; j++)
{
cout << "Matrix[" << i << "," << j << "]
cin >> p[i)(j):

}
void matrix: :show()
{
int i, 3j;
for(i = 0; i < MaxRow; i++)
{
cout << endl;
for(j = 0; j < MaxCol; j++)
cout << pli}[j] << " *;

}

void main()

{
intm, n, p, Q;
cout << "Enter Matrix A details..." << endl;
cout << "How many rows ? ";

cin >> m;

cout << "How many columns ? *;

cin >> n;

matrix a{(m, n);

a.read();

cout << "Enter Matrix B details..." << endl;

cout << "How many rows ? *;

cin >> p;

cout << "How many columns ? ";
cin >> q;

matrix b(p, q);

b.read();

cout << "Matrix A is ...*;
a.show() ;

cout << endl << "Matrix B is ...";
b.show();

matrix c{ m, n);

c.add(a, b);

cout << endl << *"C = A + B...";
c.show() ;

matrix d(m, n);

d.sub(a, b);

cout << endl << "D =A - B...";

d.show();

matrix e(m, q);

emul(a, b);
cout << endl << "E = A * B...";

e.show();

Chapter 11: Object Initialization and Cleanup

cout << endl << "(Is matrix A equal to matrix B) ? *;
if(a.eql(b)

cout << "Yes";

else

cout <<

}
Run

Enter Matrix A details...

"No" ;

How many rows ? 3

How many columns ? 3

Matrix ([0, 0]

Matrix[0,1] =

Matrix[0,2])
Matrix[1,0]
Matrix(1l,1]
Matrix(1,2]
Matrix[2,0]
Matrix[2,1]
Matrix([2,2]
Enter Matrix

B

?

LV JEEIN IEEES IR BN B A I V)

‘details...

2

[SNNISE S SH SN SR S

How many rows ? 3

How many columns ? 3

Matrix[(0,0]
Matrix[0,1)
Matrix[0,2]
Matrix[1,0]
Matrix([1l,1]
Matrix[1,2])
Matrix[2,0]
Matrix(2,1]
Matrix[2,2]

?

2% TR BREEN BRRS BRSNS IR BV

e e

Matrix A is ...

222
222
222

Matrix B is ...

111

111

111
C=A+B
333

333

233

D =A - B..

i

391

392 Mastering C++

111

111

111

E=A*B

6 66

6 6 6

6 66

(Is matrix A equal to matrix B) ? No

class matrix

{

private:

int**p; // point to matrix
public:

matrix()

{

P = new int * [MaxRow];
for (int i=o; i<MaxRow;i++)
plil=new int[MaxCol]; }_

........

MaxCol
/d\“
p—> 0 1 2 3 4
p[0] : >
p(1] >
pl2] > MaxRow
p[3] : >

A e
sizeof (int*) sizeof(int)=2 bytes

= 2 bytes, near pointer
= 4 bytes, far pointer

Figure 11.9: Constructor creating matrix dynamically

The constructor first creates a vector pointer to a list of integers of size MaxRow. It then allocates
an integer type vector of size MaxCol pointed to by each element p[i]. Figure 11.9 shows the
allocation of memory for the elements of a matrix whose size is MaxRow x MaxCol dynamically.

Chapter 11: Obiject Initialization and Cleanup 393

11.13 Constant Objects and Constructor

.C++ allows to define constant objects of user-defined classes similar to constants of standard data
types. The syntax for defining a constant object is shown in Figure 1 1.10.

| Keyword l object of type read only

ClassName const ObjectName (parameter)

Figure 11.10: Constant object creation

The data members of a constant object can be initialized only by a constructor, as a part of object
creation procedure. Once a constant object is created, no member functions of its class can modify its
data members. They can only read the contents of the data member. Such data members are termed as
read-only data members and the object is termed as constant, or read-only object. The const objects
behave like a ROM (Read Only Memory) of a computer. In such amemory, the data is stored during their
fabrication, like constant objects are initialized only by a constructor during its creation. Itis illustrated
in the program person.cpp.

// person.cpp: person class with const member functions
#include <iostream.h>

#include <string.h>

class Person

private:
char *name; // name of person
char *address; // address field
char *phone; // telephone number
public:
Person(char *NameIn, char *AddresslIn, char *Phoneln);
~Person() ;

// functions to set fields)
void Person::changename(char const *Nameln);
// functions to inspect fields
char const *getname (void) const;
char const *getaddress(void) const;
char const *getphone(void) const;
Y
// constructor
void Person::Person(char *NamelIn, char *AddressIn, char *Phoneln)
{
name = new char|[strlen(NameIn)+1]};
strcpy(name, Nameln);
address = new char[strlen(AddressIn)+1];
strcpy (address, AddressIn);
phone = new char[strlen(Phoneln Y+11;
strcpy (phone, Phoneln);

394 Mastering C++

// destructor, release memory allocated to class data members
inline void Person::~Person()
{
delete name;
delete address:;
delete phone;
}
// interface functions get... ()
inline char const *Person::getname() const
{
return name;
}
inline char const *Person: :getaddress() const
{
return address;
}
inline char const *Person::getphone() const
{
return phone;
}
void Person::changename(char const *Nameln)
{
if(name)
delete name;
name = new char(strlen(NameIln)+1];
strcpy{(name, Nameln);
}
void printperson(Person const &p)
{
if(p.getname())

cout << "Name : " << p.getname() << endl;
if(p.getaddress())

cout << "Address: " << p.getaddress() << endl ;
if(p.getphone())

cout << "Phone : " << p.getphone() << endl;

}

void main()

{
Person const me("Rajkumar","E-mail: raj@cdacb.ernet.in",

"91-080-5584271");

printperson{ me);
Person you("XYZ", *-not sure-", "-not sure-");
cout << "You XYZ by default..." << endl;
printperson(you);
you.changename("ABC");
cout << "You XYZ changed to ABC ..." << endl;
printperson{(you);

}

BRun

Name : Rajkumar
Address: E-mail: raj@cdacb.ernet.in

Chapter 11: Object initialization and Cleanup 395

Phone : 91-080-5584271
You XYZ by default...

Name . XY2

Address: -not sure-

Phone : -not sure-

You XYZ changed to ABC ...
Name : ABC

Address: -not sure-

Phone : -not sure-

The above program shows how a constant object of the class Person can be defined. At the point
of the definition of an object, the data fields are initialized (this is the action of the constructor).
Following the definition,

Person const me("Rajkumar", "raj@cdacb.ernet.in", "91-080-5584271") ;
it would be illegal to try to redefine the name, address, or phone number for the object me; hence, the
statement

me.setname ("Bill Gates"):

would not be accepted by the compiler. Generally, it is a good habit to define objects and member
functions, which do not modify their data as constant type.

11.14 Static Data Members with Constructors and Destructors

Each object of a class has its own public or private data members, which are accessible only to its
member functions. In certain situations, it is desirable to have one or more common data fields, which
are accessible to all the objects of the class. An example of such a situation is to keep track of the status
of how many objects of a class are created and how many of them are currently active in the program.
Based on the number of objects present, some specific initialization has to be performed; only the first
object of the class would then perform the initialization and set the flag to done.

The use of static data members with constructors and destructors is illustrated by the program
graph.cpp. It has a class called Graphics, which defines the communication of a program with a
graphics device (such as EGA or VGA screen). The initial preparation of the device, i.e., switching from
text mode to graphics mode, is an action of the constructor and depends on a static flag variable
nobjects. The variable nobjects simply counts the number of objects of the class Graphics
present at that time. Similarly, the destructor of a class may switch back from graphics mode to text mode
when the last graphical object ceases to exist.

// graph.cpp: keeps count of how many objects are created
#include <iostream.h>
class Graphics
{
private:
// counter of number of objects
static int nobjects;
// hypothetical functions to switch to graphics
// mode or back to text mode
void setgraphicsmode ()

1

396 Mastering C++

void settextmode ()
(1}
public:
// constructor, destructor
Graphics ();
~Graphics ();
//other interface is not shown here,to draw lines, or circles etc.
int get_count() const :
{
return nobjects;

}:
// the constructor
Graphics: :Graphics ()
{
if (! nobjects)
setgraphicsmode ();
nobjects++;
}
// the destructor
Graphics: :~Graphics ()
{

nobjects—;
if (! nobjects)
settextmode ();
}
void my_func()
{

Graphics obj; // nobject is incremented by its constructor
cout<<"\nNo. of Graphics Object's while in my_func = *<<obj.get_count();
} // obj goes out of scope, destructor is called

// the static data member
int Graphics::nobjects = 0;//global:if not defined generates linker error

void main{()

{
Graphics objl;
cout<<“No. of Graphics Object’'s before my_func = “<<objl.get_count();
my_func();
cout<<"\nNo. of Graphics Object's after my_func = “<<objl.get_count();
Graphics obj2, obj3, obj4;
cout<<"\nValue of static member nobjects after all 3 more objects...";
cout << "\nIn objl = * << objl.get_count();
cout << *\nIn obj2 = * << obj2.get_count(};
cout << "\nIn obj3 = " << obj3.get_count();
cout << "\nIn obj4 = " << objd.get_count();
}

Run

No. of Graphics Object's before my_func = 1

No. of Graphics Object's while in my_func 2

Chapter 11: Object Initialization and Cleanup 7

No. of Graphics Object's after my_func =1
value of static member nobjects after all 3 more objects...

In objl = 4
In obj2 = 4
In obj3 = 4
In obj4 = 4

The purpose of the variable nobjects is to count the number of objects of the class Graphics,
which exist at a given time. When the first object is created, the graphics device is initialized. When the
last object is destroyed, the switch from graphics mode to text mode is made. The statement

int Graphics::nobjects = 0;
defines and initializes the static data member. If this statement is missing, the linker will generate the
error: undefined Graphics::nobjects symbol.

It is obvious that when the ¢class Graphics defines more than one constructor, each constructor
would need to increment the variable nobjects and possibly would have to initialize the graphics
mode. The constructor

Graphics: :Graphics ()
increments the variable nobjects by one and the destructor

Graphics: :~Graphics ()
decrements the variable nobj ects by one. Therefore, for every object created, the variable nobjects
is incremented by one and whenever an object of the class Graphics goes out of scope, the variable
nobjects is decremented by one.

11.15 Nested Classes

The power of abstraction of a class can be increased by including other class declarations inside a
class. A class declared inside the declaration of another class is called nested class. Nested classes
provide classes with non-global status. Host and nested classes follow the same access rules for
members that exist between non-nested classes. Nested classes could be used to hide specialized
classes and their instances within a host class.

A member of a class may itself be a class. Such nesting enables building of very powerful data
structures. The Student class can be enhanced to accommodate the date of birth of a student. The
new member data type date is a class by itself as shown below:

class Student

{
private:
int roll_no;
char name{25];
char branch[15];
int marks;
public:
class date
{
int day:
int month;
int year;

398 Mastering C++

public:
date()
{
// initializing members of date class
}
read() ;
..... // other member functions of date class
} birthday; // instance of the nested date class

Student ()
{
....// initialize members of Student class

}

~Student ()

{

}

read()

{
//read members of Student class's object including 'birthday’
cin >> roll_no;

birthday.read(); // accessing member of a nested class date
}
// other member functions of Student class
}i

The embedded class date is declared within the enclosing class declaration. An object of type
Student can be defined as follows:
Student s1;
The year in which the student s1 was born can be accessed as follows:
sl.birthday.year
A statement such as,
sl.date.day = 2; // error
1s invalid, because members of the nested class must be accessed using its object name.

The feature of nesting of classes is useful while implementing powerful data structures such as
linked lists and trees. For instance, the stack data structure can be implemented having a node data
member which is an instance of another class (node class).

Review Questions

11.1 What are constructors and destructors ? Explain how they differ from normal functions.
11.2 What are the differences between default and parameterized constructors ?

11.3 What are copy constructors and explain their need ?

11.4 What is the order of construction and destruction of objects ?

11.5 What are read-only objects ? What is the role of constructor in creating such objects ?
11.6 State which of the following statements are TRUE or FALSE. Give reasons.

11.7

11.8
11.9

11.10

11.11

Chapter 11: Object Initialization and Cleanup 399

(a) Constructors must be explicitly invoked.

(b) Constructors defined in private section are useful.

(c) Constructors can return value. ’

(d) Destructors are invoked automatically.

(e) Destructors take input parameters.

(f) Destructors can be overloaded.

(g) Constructors cannot be overloaded.

(h) Constructors can take default arguments.

(i) Data members of nameless objects can be initialized using constructors only.
(j) Constructors can allocate memory during runtime.

(k) A class member function can take its class's objects as value arguments.
(1) Constant objects can be initialized by using constructors only.

(m) Data members of a class can be initialized at the point of their definition.

Consider a class called MyArray having pointer to integers as its data member. Its objects must
appear like arrays, but they must be dynamically re-sizable. Write a program to illustrate the use
of constructors in MyArray class. .
Write a program to model Time class using constructors.
Distinguish between the following two statements:
String name("Smrithi®);
String name = *Smrithi*";
Declare a class called String. It must have constructors which allow definition of objects in
the following form: (The class String has data member stx of type char *)
String namel; // str points to NULL
string name2 = "Minu"; // one-argument constructor is invoked
String name3 = name2; //one-argument constructor taking String object
Write a program to model String class and to manipulate its objects. The destructor must release
memory allocated to the str data member by its counterpart.

Create a class, which keeps track of the number of its instances. Use static data member, con-
structors, and destructors to maintain updated information about active objects.

12

Dynamic Objects

12.1 Introduction

C++ takes the middle ground between languages (such as C and Pascal) which support dynamic
memory allocation (discussed in the chapter Pointers and Runtime Binding) and languages (like Java),
in which all variables are dynamically allocated. C++ supports creation of objects with scoped lifetimes
(stack-based objects) and with arbitrary lifetimes (heap-based objects). Stack-based objects are man-
aged by the compiler implicitly, whereas heap-based objects are managed by the programmers explicitly.

C++ is different from C because it not only allocates memory for an object, but also initializes them.
Thus when a dynamic object is created, it creates a live object, and not just a chunk of memory big
enough to hold the object. It is initialized with necessary data at runtime. Unlike dynamic memory
allocation which just allocates memory, dynamic object creation supported by C++ allocates and initial-
izes objects at runtime.

A class can be instantiated at runtime and objects created by such instantiation are called dynamic
objects. The lifetime of dynamic objects in C++ (which is allocated from heap memory—the free store)
is managed explicitly by the program. The program must guarantee that each dynamic object is deleted
when it is no longer needed, and certainly before it becomes garbage. (There is no garbage collection in
standard C++, and few programs can afford to produce garbage.) For each dynamic allocation, a policy
that determines the objects’s lifetime must be found by the programmer and implemented. These poli-
cies used in managing dynamic objects will be discussed at the end of this chapter. The lif~time of an
object in C++ is the interval of time it exists by occupying memory. Creation and deletion of objects as
and when required, offers a great degree of flexibility in programming.

Objects with scoped lifetimes are created in the stack memory. Stack memory is a store house which
holds local variables or objects, and whenever they go out of scope, the memory allocated for them in
the stack is released automatically. Objects with arbitrary lifetimes are created in the heap memory.
These dynamic objects can be created or destroyed as and when required, explicitly by the programmer.
The operators new and delete used with standard data type variable's management can also be used
for creating or destroying objects at runtime respectively.

12.2 Pointers to Objects

The C++ language defines two operators which are specific for the allocation and deallocation of
memory. These operators are new and delete. The new operator is used to create dynamic objects
and delete operator is used to release the memory allocated to the dynamic object by the new
operator. A pointer to a variable can be defined to hold the address of an object, which is created
statically or dynamically. Such pointer variables can be used to access data or function members of a
class using the * or -> operators.

